Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Behav Neurosci ; 15: 690019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267630

RESUMO

Introduction: Pigs have been an increasingly popular preclinical model in nutritional neuroscience, as their anatomy, physiology, and nutrition requirements are highly comparable to those of humans. Eyeblink conditioning is one of the most well-validated behavioral paradigms in neuroscience to study underlying mechanisms of learning and memory formation in the cerebellum. Eyeblink conditioning has been performed in many species but has never been done on young pigs. Therefore, our aim here was to develop and validate an eyeblink conditioning paradigm in young pigs. Method: Eighteen intact male pigs were artificially reared from postnatal day 2-30. The eyeblink conditioning setup consisted of a sound-damping box with a hammock that pigs were placed in, which allowed the pig to remain comfortable yet maintain a typical range of head motion. In a delay conditioning paradigm, the conditional stimulus (CS) was a 550 ms blue light-emitting diode (LED), the unconditional stimulus (US) was a 50 ms eye air-puff, the CS-US interval was 500 ms. Starting at postnatal day 14, pigs were habituated for 5 days to the eyeblink conditioning setup, followed by 5 daily sessions of acquisition training (40 paired CS-US trials each day). Results: The group-averaged amplitude of conditioned eyelid responses gradually increased over the course of the 5 days of training, indicating that pigs learned to make the association between the LED light CS and the air-puff US. A similar increase was found for the conditioned response (CR) probability: the group-averaged CR probability on session 1 was about 12% and reached a CR probability of 55% on day 5. The latency to CR peak time lacked a temporal preference in the first session but clearly showed preference from the moment that animals started to show more CRs in session 2 and onwards whereby the eyelid was maximally closed exactly at the moment that the US would be delivered. Conclusion: We concluded that 3-week-old pigs have the capability of performing in a cerebellar classical conditioning task, demonstrating for the first time that eyeblink conditioning in young pigs has the potential to be a valuable behavioral tool to measure neurodevelopment.

2.
J Vis Exp ; (170)2021 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-33970130

RESUMO

Use of the pig as a preclinical and translatable animal model has been well-documented and accepted by research fields investigating cardiovascular systems, gastrointestinal systems, and nutrition, and the pig is increasingly being used as a large animal model in neuroscience. Furthermore, the pig is an accepted model to study neurodevelopment as it displays brain growth and development patterns similar to what occurs in humans. As a less common animal model in neuroscience, surgical and dissection procedures on pigs may not be as familiar or well-practiced among researchers. Therefore, a standardized visual protocol detailing consistent extraction and dissection methods may prove valuable for researchers working with the pig. The following video showcases a technique to remove the pig brain while keeping the cortex and brainstem intact and reviews methods to dissect several commonly investigated brain regions including the brainstem, cerebellum, midbrain, hippocampus, striatum, thalamus, and medial prefrontal cortex. The purpose of this video is to provide researchers with the tools and knowledge necessary to consistently perform a brain extraction and dissection on the four-week-old pig.


Assuntos
Encéfalo/cirurgia , Animais , Modelos Animais de Doenças , Masculino , Suínos
3.
Front Neurosci ; 14: 770, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903658

RESUMO

Human milk contains a unique profile of oligosaccharides (OS) and preliminary evidence suggests they impact brain development. The objective of this study was to assess the impact of bovine and/or human milk oligosaccharides (HMO) (2'-fucosyllactose and Lacto-N-neotetraose) on cognition, brain development, and hippocampal gene expression. Beginning on postnatal day (PND) 2, male pigs received one of four milk replacers containing bovine milk oligosaccharides (BMOS), HMO, both (BMOS + HMO), or neither. Pigs were tested on the novel object recognition task using delays of 1- or 48-h at PND 22. At PND 32-33, magnetic resonance imaging procedures were used to assess structural brain development and hippocampal tissue was collected for analysis of mRNA expression. Pigs consuming only HMO exhibited recognition memory after a 1-h delay and those consuming BMOS + HMO exhibited recognition memory after a 48-h delay. Both absolute and relative volumes of cortical and subcortical brain regions were altered by diet. Hippocampal mRNA expression of GABRB2, SLC1A7, CHRM3, and GLRA4 were most strongly affected by diet. HMO and BMOS had distinct effects on brain structure and cognitive performance. These data suggest different mechanisms underlie their influence on brain development.

4.
Nutrients ; 12(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709093

RESUMO

Mounting evidence suggests that dietary oligosaccharides promote brain development. This study assessed the capacity of oligofructose (OF) alone or in combination with 2'-fucosyllactose (2'-FL) to alter recognition memory, structural brain development, and hippocampal gene expression. Beginning on postnatal day (PND) 2, male pigs received one of three milk replacers formulated to contain OF, OF + 2'-FL, or no oligosaccharides (CON). Pigs were tested on the novel object recognition task using delays of 1 or 48 h at PND 22. At PND 32-33, magnetic resonance imaging (MRI) procedures were used to assess structural brain development and hippocampal tissue was collected for analysis of mRNA expression. Pigs that consumed the OF diet demonstrated increased recognition memory after a 1 h delay, whereas those consuming diets containing OF + 2'-FL displayed increased recognition memory after a 48 h delay. Pigs fed OF or OF + 2'-FL exhibited a larger relative volume of the olfactory bulbs compared with CON pigs. Provision of OF or OF + 2'-FL altered gene expression related to dopaminergic, GABAergic, cholinergic, cell adhesion, and chromatin remodeling processes. Collectively, these data indicate that dietary OF and OF + 2'-FL differentially improve cognitive performance and affect olfactory bulb structural development and hippocampal gene expression.


Assuntos
Hipocampo/metabolismo , Oligossacarídeos/administração & dosagem , Trissacarídeos/administração & dosagem , Animais , Dieta , Regulação da Expressão Gênica , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Suínos
5.
Curr Dev Nutr ; 2(6): nzy015, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29955727

RESUMO

BACKGROUND: Choline is an essential nutrient that is pivotal to proper brain development. Research in animal models suggests that perinatal choline deficiency influences neuron development in the hippocampus and cortex, yet these observations require invasive techniques. OBJECTIVE: This study aimed to characterize the effects of perinatal choline deficiency on gray and white matter development with the use of noninvasive neuroimaging techniques in young pigs. METHODS: During the last 64 d of the 114-d gestation period Yorkshire sows were provided with a choline-sufficient (CS) or choline-deficient (CD) diet, analyzed to contain 1214 mg or 483 mg total choline/kg diet, respectively. Upon farrowing, pigs (Sus scrofa domesticus) were allowed colostrum consumption for ≤48 h, were further stratified into postnatal treatment groups, and were provided either CS or CD milk replacers, analyzed to contain 1591 or 518 mg total choline/kg diet, respectively, for 28 d. At 30 d of age, pigs were subjected to MRI procedures to assess brain development. Gray and white matter development was assessed through voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) to assess the effects of prenatal and postnatal dietary choline status. RESULTS: VBM analysis indicated that prenatally CS pigs exhibited increased (P < 0.01) gray matter in the left and right cortex compared with prenatally CD pigs. Analysis of white matter indicated that prenatally CS pigs exhibited increased (P < 0.01) white matter in the internal capsule, putamen-globus pallidus, and right cortex compared with prenatally CD pigs. No postnatal effects (P > 0.05) of choline status were noted for VBM analyses of gray and white matter. TBSS also showed no significant effects (P > 0.05) of prenatal or postnatal choline status for diffusion values along white matter tracts. CONCLUSIONS: Observations from this study suggest that prenatal choline deficiency results in altered cortical gray matter and reduced white matter in the internal capsule and putamen of young pigs. With the use of noninvasive neuroimaging techniques, results from our study indicate that prenatal choline deficiency greatly alters gray and white matter development in pigs, thereby providing a translational assessment that may be used in clinical populations.

6.
Magn Reson Imaging ; 50: 54-60, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29540331

RESUMO

Accurate quantitative non-invasive assessments of arterial cerebral blood volume (aCBV) can greatly benefit the study of cerebral vascular health in both humans and in animal models. In recent years, progress has been made in the techniques available to quantify CBV with magnetic resonance imaging (MRI). Here, we compared a non-invasive technique, measuring inflowing vascular space occupancy with dynamic subtraction (iVASO-ds) with a contrast-based vascular space occupancy measurement in piglets. In addition, we measured how the iVASO-ds derived aCBV changed with piglet development from 4 weeks to 8 weeks. Our results indicate that there is a significant correlation between the non-invasive iVASO-ds derived aCBV and CBV quantified using a gadolinium contrast agent, despite the contrast-based method providing significantly higher estimates of CBV resulting from challenges inherent to using the contrast-based technique. In addition, it was possible to see significant increases in blood volume across 4 weeks to 8 weeks in pig development with the non-invasive technique. Our results suggest that the non-invasive technique, iVASO-ds can assess aCBV in the developing piglet, both cross-sectionally and longitudinally, and has significant advantages over the contrast-based quantification method.


Assuntos
Volume Sanguíneo Cerebral/fisiologia , Meios de Contraste , Gadolínio , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Humanos , Masculino , Modelos Animais , Suínos
7.
Nutrients ; 10(2)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29382055

RESUMO

Early-life iron deficiency has lifelong influences on brain structure and cognitive function, however characterization of these changes often requires invasive techniques. There is a need for non-invasive assessment of early-life iron deficiency with potential to translate findings to the human clinical setting. In this study, 28 male pigs were provided either a control diet (CONT; n = 14; 23.5 mg Fe/L milk replacer) or an iron-deficient diet (ID; n = 14; 1.56 mg Fe/L milk replacer) for phase 1 of the study, from postnatal day (PND) 2 until 32. Twenty pigs (n = 10/diet from phase 1 were used in phase 2 of the study from PND 33 to 61, where all pigs were provided a common iron-sufficient diet, regardless of their phase 1 dietary iron status. All pigs were subjected to magnetic resonance imaging at PND 32 and again at PND 61, and quantitative susceptibility mapping was used to assess brain iron content at both imaging time-points. Data collected on PND 61 were analyzed using voxel-based morphometry and tract-based spatial statistics to determine tissue concentration difference and white matter tract integrity, respectively. Quantitative susceptibility mapping outcomes indicated reduced iron content in the pons, medulla, cerebellum, left cortex, and left hippocampus of ID pigs compared with CONT pigs, regardless of imaging time-point. In contrast, iron contents were increased in the olfactory bulbs of ID pigs compared with CONT pigs. Voxel-based morphometric analysis indicated increased grey and white matter concentrations in CONT pigs compared with ID pigs that were evident at PND 61. Differences in tissue concentrations were predominately located in cortical tissue as well as the cerebellum, thalamus, caudate, internal capsule, and hippocampi. Tract-based spatial statistics indicated increased fractional anisotropy values along subcortical white matter tracts in CONT pigs compared with ID pigs that were evident on PND 61. All described differences were significant at p ≤ 0.05. Results from this study indicate that neuroimaging can sensitively detect structural and physiological changes due to early-life iron deficiency, including grey and white matter volumes, iron contents, as well as reduced subcortical white matter integrity, despite a subsequent period of dietary iron repletion.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Deficiências de Ferro , Neuroimagem , Animais , Animais Recém-Nascidos , Química Encefálica , Mapeamento Encefálico , Dieta , Ferro/administração & dosagem , Ferro da Dieta/administração & dosagem , Imageamento por Ressonância Magnética , Masculino , Suínos
8.
Nutrients ; 9(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182578

RESUMO

Sialic acid (SA) is a key component of gangliosides and neural cell adhesion molecules important during neurodevelopment. Human milk contains SA in the form of sialyllactose (SL) an abundant oligosaccharide. To better understand the potential role of dietary SL on neurodevelopment, the effects of varying doses of dietary SL on brain SA content and neuroimaging markers of development were assessed in a newborn piglet model. Thirty-eight male pigs were provided one of four experimental diets from 2 to 32 days of age. Diets were formulated to contain: 0 mg SL/L (CON), 130 mg SL/L (LOW), 380 mg SL/L (MOD) or 760 mg SL/L (HIGH). At 32 or 33 days of age, all pigs were subjected to magnetic resonance imaging (MRI) to assess brain development. After MRI, pig serum and brains were collected and total, free and bound SA was analyzed. Results from this study indicate dietary SL influenced (p = 0.05) bound SA in the prefrontal cortex and the ratio of free SA to bound SA in the hippocampus (p = 0.04). Diffusion tensor imaging indicated treatment effects in mean (p < 0.01), axial (p < 0.01) and radial (p = 0.01) diffusivity in the corpus callosum. Tract-based spatial statistics (TBSS) indicated differences (p < 0.05) in white matter tracts and voxel-based morphometry (VBM) indicated differences (p < 0.05) in grey matter between LOW and MOD pigs. CONT and HIGH pigs were not included in the TBSS and VBM assessments. These findings suggest the corpus callosum, prefrontal cortex and hippocampus may be differentially sensitive to dietary SL supplementation.


Assuntos
Corpo Caloso/metabolismo , Lactose/análogos & derivados , Córtex Pré-Frontal/metabolismo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Suínos/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Corpo Caloso/diagnóstico por imagem , Dieta/veterinária , Lactose/administração & dosagem , Lactose/farmacologia , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Ácidos Siálicos/administração & dosagem , Ácidos Siálicos/química
9.
Gut Microbes ; 8(6): 589-600, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28703640

RESUMO

A dynamic relationship between the gut microbiota and brain is pivotal in neonatal development. Dysbiosis of the microbiome may result in altered neurodevelopment; however, it is unclear which specific members of microbiota are most influential and what factors might mediate the relationship between the gut and the brain. Twenty-four vaginally-derived male piglets were subjected to magnetic resonance spectroscopy at 30 d of age. Ascending colon contents, feces, and blood were collected and analyzed for volatile fatty acids, microbiota relative abundance by 16s rRNA, and serum metabolites, respectively. A mediation analysis was performed to assess the mediatory effect of serum biomarkers on the relationship between microbiota and neurometabolites. Results indicated fecal Ruminococcus and Butyricimonas predicted brain N-acetylaspartate (NAA). Analysis of serum biomarkers indicated Ruminococcus independently predicted serum serotonin and cortisol. A 3-step mediation indicated: i) Ruminococcus negatively predicted NAA, ii) Ruminococcus negatively predicted cortisol, and iii) a significant indirect effect (i.e., the effect of fecal Ruminococcus through cortisol on NAA) was observed and the direct effect became insignificant. Thus, serum cortisol fully mediated the relationship between fecal Ruminococcus and brain NAA. Using magnetic resonance spectroscopy, this study used a statistical mediation analysis and provides a novel perspective into the potential underlying mechanisms through which the microbiota may shape brain development. This is the first study to link Ruminococcus, cortisol, and NAA in vivo, and these findings are substantiated by previous literature indicating these factors may be influential in the etiology of neurodevelopmental disorders.


Assuntos
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Disbiose/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Hidrocortisona/sangue , Ruminococcus/fisiologia , Animais , Animais Recém-Nascidos , Ácido Aspártico/análise , Encéfalo/diagnóstico por imagem , Colo Ascendente/química , Ácidos Graxos Voláteis/análise , Hidrocortisona/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Suínos
10.
Adv Nutr ; 8(1): 92-104, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096130

RESUMO

Optimal nutrition early in life is critical to ensure proper structural and functional development of infant organ systems. Although pediatric nutrition historically has emphasized research on the relation between nutrition, growth rates, and gastrointestinal maturation, efforts increasingly have focused on how nutrition influences neurodevelopment. The provision of human milk is considered the gold standard in pediatric nutrition; thus, there is interest in understanding how functional nutrients and bioactive components in milk may modulate developmental processes. The piglet has emerged as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young pigs and humans, the piglet is being used increasingly in developmental nutritional neuroscience studies. The piglet primarily has been used to assess the effects of dietary fatty acids and their accretion in the brain throughout neurodevelopment. However, recent research indicates that other dietary components, including choline, iron, cholesterol, gangliosides, and sialic acid, among other compounds, also affect neurodevelopment in the pig model. Moreover, novel analytical techniques, including but not limited to MRI, behavioral assessments, and molecular quantification, allow for a more holistic understanding of how nutrition affects neurodevelopmental patterns. By combining early-life nutritional interventions with innovative analytical approaches, opportunities abound to quantify factors affecting neurodevelopmental trajectories in the neonate. This review discusses research using the translational pig model with primary emphasis on early-life nutrition interventions assessing neurodevelopment outcomes, while also discussing nutritionally-sensitive methods to characterize brain maturation.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Neurônios/fisiologia , Necessidades Nutricionais , Animais , Animais Recém-Nascidos , Comportamento Animal , Biologia do Desenvolvimento , Dieta , Modelos Animais , Estado Nutricional , Suínos
11.
Front Neurol ; 8: 735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375469

RESUMO

BACKGROUND: Iron deficiency is the most common micronutrient deficiency worldwide and children are at an increased risk due to the rapid growth occurring during early life. The developing brain is highly dynamic, requires iron for proper function, and is thus vulnerable to inadequate iron supplies. Iron deficiency early in life results in altered myelination, neurotransmitter synthesis, neuron morphology, and later-life cognitive function. However, it remains unclear if dietary iron repletion after a period of iron deficiency can recover structural deficits in the brain. METHOD: Twenty-eight male pigs were provided either a control diet (CONT; n = 14; 23.5 mg Fe/L milk replacer) or an iron-deficient diet (ID; n = 14; 1.56 mg Fe/L milk replacer) for phase 1 of the study, from postnatal day (PND) 2 until 32. Twenty pigs (n = 10/diet from phase 1) were used in phase 2 of the study from PND 33 to 61, all pigs were provided a common iron sufficient diet, regardless of their early-life dietary iron status. All pigs remaining in the study were subjected to magnetic resonance imaging (MRI) at PND 32 and again at PND 61 using structural imaging sequences and diffusion tensor imaging (DTI) to assess volumetric and microstructural brain development, respectively. Data were analyzed using a two-way ANOVA to assess the main and interactive effects of early-life iron status and time. RESULTS: An interactive effect was observed for absolute whole brain volumes, in which whole brain volumes of ID pigs were smaller at PND 32 but were not different than CONT pigs at PND 61. Analysis of brain region volumes relative to total brain volume indicated interactive effects (i.e., diet × day) in the cerebellum, olfactory bulb, and putamen-globus pallidus. Main effects of early-life iron status, regardless of imaging time point, were noted for decreased relative volumes of the left hippocampus, right hippocampus, thalamus, and increased relative white matter volume in ID pigs compared with CONT pigs. DTI indicated interactive effects for fractional anisotropy (FA) in the whole brain, left cortex, and right cortex. Main effects of early-life iron status, regardless of imaging time point, were observed for decreased FA values in the caudate, cerebellum, and internal capsule in ID pigs compared with CONT pigs. All comparisons described above were significant at P < 0.05. CONCLUSION: Results from this study indicate that dietary iron repletion is able to compensate for reduced absolute brain volumes early in life; however, microstructural changes and altered relative brain volumes persist despite iron repletion.

12.
J Nutr ; 146(11): 2216-2223, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27733523

RESUMO

BACKGROUND: Choline is essential for synthesis of phospholipids, neurodevelopment, and DNA methylation. It is unknown whether dietary perinatal choline deficiency affects maternal milk composition. OBJECTIVE: We examined whether perinatal maternal dietary choline deficiency influences porcine-milk composition. METHODS: Yorkshire sows were fed choline-deficient (CD) or choline-sufficient (CS) gestation diets [544 or 1887 mg choline/kg dry matter (DM), respectively] from 65 d before to 48 h after parturition and then fed lactation diets (517 or 1591 mg choline/kg DM, respectively) through day 19 of lactation. Milk was collected from 7 sows fed each diet at days 0 (colostrum), 7-9 (mature milk), and 17-19 (preweaning) of lactation. Sow plasma was collected 65 d before and 19 d after parturition. Milk was analyzed for choline metabolite, fatty acid (FA), and amino acid composition. All outcomes were analyzed to assess main and interactive effects of choline intake and time. RESULTS: Plasma choline metabolites did not differ before treatment, but free choline, betaine, and dimethylglycine concentrations were lower in CD-fed than in CS-fed sows at day 19 of lactation (interaction; P < 0.05). Milk betaine concentrations responded similarly, with no differences due to choline intake at day 0 of lactation, but lower concentrations in CD-fed than in CS-fed sows at day 18 of lactation (interaction; P < 0.001). Certain milk long-chain FAs also exhibited no differences at day 0 of lactation but higher concentrations in CD-fed than in CS-fed sows at day 18 of lactation (P < 0.05). CONCLUSIONS: These data indicate that, in pigs, dietary choline deficiency induces alterations in plasma choline metabolites that are evident at the end of lactation. Betaine and select FAs in milk are sensitive to maternal dietary choline deficiency and day of lactation. Alterations in concentrations of these nutrients may affect early-life neonatal development.


Assuntos
Aminoácidos/metabolismo , Deficiência de Colina/veterinária , Colina/administração & dosagem , Ácidos Graxos/metabolismo , Doenças dos Suínos/metabolismo , Suínos/fisiologia , Aminoácidos/química , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Colina/metabolismo , Dieta/veterinária , Ácidos Graxos/química , Feminino , Lactação/fisiologia , Leite/química , Período Periparto , Gravidez
13.
Front Pediatr ; 4: 95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672632

RESUMO

INTRODUCTION: Provision of adequate nutrients is critical for proper growth and development of the neonate, yet the impact of breastfeeding versus formula feeding on neural maturation has to be fully determined. Using the piglet as a model for the human infant, our objective was to compare neurodevelopment of piglets that were either sow-reared (SR) or artificially reared (AR) in an artificial setting. METHODS: Over a 25-day feeding study, piglets (1.5 ± 0.2 kg initial bodyweight) were either SR (n = 10) with ad libitum intake or AR (n = 29) receiving an infant formula modified to mimic the nutritional profile and intake pattern of sow's milk. At study conclusion, piglets were subjected to a standardized set of magnetic resonance imaging (MRI) procedures to quantify structure and composition of the brain. RESULTS: Diffusion tensor imaging, an MRI sequence that characterizes brain microstructure, revealed that SR piglets had greater (P < 0.05) average white matter (WM) (generated from a piglet specific brain atlas) fractional anisotropy (FA), and lower (P < 0.05) mean and radial and axial diffusivity values compared with AR piglets, suggesting differences in WM organization. Voxel-based morphometric analysis, a measure of white and gray matter (GM) volumes concentrations, revealed differences (P < 0.05) in bilateral development of GM clusters in the cortical brain regions of the AR piglets compared with SR piglets. Region of interest analysis revealed larger (P < 0.05) whole brain volumes in SR animals compared with AR, and certain subcortical regions to be larger (P < 0.05) as a percentage of whole brain volume in AR piglets compared with SR animals. Quantification of brain metabolites using magnetic resonance spectroscopy revealed SR piglets had higher (P < 0.05) concentrations of myo-inositol, glycerophosphocholine + phosphocholine, and creatine + phosphocreatine compared with AR piglets. However, glutamate + glutamine levels were higher (P < 0.05) in AR piglets when compared with SR animals. CONCLUSION: Overall, increases in brain metabolite concentrations, coupled with greater FA values in WM tracts and volume differences in GM of specific brain regions, suggest differences in myelin development and cell proliferation in SR versus AR piglets.

14.
Front Nutr ; 3: 39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660754

RESUMO

BACKGROUND: Milk oligosaccharides (OSs) are bioactive components known to influence neonatal development. These compounds have specific physiological functions acting as prebiotics, immune system modulators, and enhancing intestine and brain development. OBJECTIVES: The pig is a commonly used model for studying human nutrition, and there is interest in quantifying OS composition of porcine milk across lactation compared with human milk. In this study, we hypothesized that OS and sialic acid (SA) composition of porcine milk would be influenced by stage of lactation. METHODS: Up to 250 mL of milk were collected from seven sows at each of three time points: day 0 (colostrum), days 7-9 (mature), and days 17-19 (weaning). Colostrum was collected within 6 h of farrowing and 3-day intervals were used for mature and weaning milk to ensure representative sampling. Milk samples were analyzed for OS profiles by Nano-LC Chip-QTOF MS, OS concentrations via HPAEC-PAD, and SA (total and free) was assessed by enzymatic reaction fluorescence detection. RESULTS: Sixty unique OSs were identified in porcine milk. Neutral OSs were the most abundant at each lactation stage (69-81%), followed by acidic-sialylated OSs (16-29%) and neutral-fucosylated OSs (2-4%). As lactation progressed, acidic OSs decreased (P = 0.003), whereas neutral-fucosylated (P < 0.001) and neutral OSs (P = 0.003) increased throughout lactation. Six OSs were present in all samples analyzed across lactation [lacto-N-difucohexaose I (LNDFH-I), 2'-fucosyllactose (2'-FL), lacto-N-fucopentaose I (LNFP-I), lacto-N-neohexaose (LNnH), α1-3,ß-4-d-galactotriose (3-Hex), 3'-sialyllactose (3'-SL)], while LDFT was present only in colostrum samples. Analysis of individual OS concentrations indicated differences (P = 0.023) between days 0 and 7. Conversely, between days 7 and 18, OS concentrations remained stable with only LNnH (P < 0.001) and LNDFH-I (P = 0.002) decreasing over this period. Analysis of free SA indicated a decrease (P < 0.001) as lactation progressed, while bound (P < 0.001) and total (P < 0.001) SA increased across lactation. CONCLUSION: Concentrations of OS differ between colostrum and mature milk in the pig, and SA concentrations shift from free to bound forms as lactation progresses. Our results suggest that although porcine milk OS concentration and the number of structures is lower than human milk, the OS profile appears to be closer to human milk rather than to bovine milk, based on previously published profiles.

15.
J Nutr ; 146(7): 1420-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281804

RESUMO

BACKGROUND: Cognitive deficits associated with postnatal iron deficiency (ID) suggest abnormal brain development, but little is known about animals with gyrencephalic brains. OBJECTIVE: The objective was to assess the impact of ID on brain development in piglets. METHODS: Male and female Yorkshire piglets were reared from postnatal day (PD) 2 until PD 29 or 30 by using milk replacer adequate [control (CON)] or deficient (100 compared with 10 mg/kg) in iron and subjected to MRI to assess brain macrostructure, microstructure, and metabolites in the dorsal hippocampi and intervening space. After MRI, brains were collected for histology. Hematocrit, hemoglobin, and liver iron were measured to determine iron status. RESULTS: Hematocrit and hemoglobin in ID piglets were less than CON after PD 14 (P < 0.001), and at the study end liver iron in ID piglets was less than CON (P < 0.001). Brain region volumes were not affected by ID, but changes in brain composition were evident. ID piglets had less white matter in 78,305 voxels, with large clusters in the hippocampus and cortex. ID piglets had less gray matter in 13,625 voxels primarily in cortical areas and more gray matter in 28,017 voxels, most notably in olfactory bulbs and hippocampus. The major effect of ID on white matter was supported by lower fractional anisotropy values in the corpus callosum (0.300 compared with 0.284, P = 0.006) and in whole brain white matter (0.313 compared with 0.307, P = 0.002) in ID piglets. In coronal brain sections, corpus callosum width was less (P = 0.043) in ID piglets. Inositol was lower (P = 0.01) and phosphocholine was higher (P = 0.03) in hippocampus of ID piglets. CONCLUSIONS: Postnatal ID in piglets affects brain development, especially white matter. If the effects of ID persist, it might explain the lasting detrimental effects on cognition.


Assuntos
Anemia Ferropriva/veterinária , Encefalopatias/veterinária , Encéfalo/crescimento & desenvolvimento , Doenças dos Suínos/etiologia , Anemia Ferropriva/patologia , Animais , Animais Recém-Nascidos , Encefalopatias/etiologia , Feminino , Masculino , Suínos , Doenças dos Suínos/patologia
16.
Front Pediatr ; 4: 44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200325

RESUMO

INTRODUCTION: Alpha-lipoic acid (a-LA) is an antioxidant shown to ameliorate age-associated impairments of brain and cardiovascular function. Human milk is known to have high antioxidant capacity; however, the role of antioxidants in the developing brain is largely uncharacterized. This exploratory study aimed to examine the dose-response effects of a-LA on piglet growth and neurodevelopment. METHODS: Beginning at 2 days of age, 31 male pigs received 1 of 3 diets: control (CONT) (0 mg a-LA/100 g), low a-LA (LOW) (120 mg a-LA/100 g), or high a-LA (HIGH) (240 mg a-LA/100 g). From 14 to 28 days of age, pigs were subjected to spatial T-maze assessment, and macrostructural and microstructural neuroimaging procedures were performed at 31 days of age. RESULTS: No differences due to diet were observed for bodyweight gain or intestinal weight and length. Spatial T-maze assessment did not reveal learning differences due to diet in proportion of correct choices or latency to choice measures. Diffusion tensor imaging revealed decreased (P = 0.01) fractional anisotropy (FA) in the internal capsule of HIGH-fed pigs compared with both the CONT (P < 0.01)- and LOW (P = 0.03)-fed pigs, which were not different from one another. Analysis of axial diffusivity (AD) within the internal capsule revealed a main effect of diet (P < 0.01) in which HIGH-fed piglets exhibited smaller (P < 0.01) rates of diffusion compared with CONT piglets, but HIGH-fed piglets were not different (P = 0.12) than LOW-fed piglets. Tract-based spatial statistics, a comparison of FA values along white matter tracts, revealed 1,650 voxels where CONT piglets exhibited higher (P < 0.05) values compared with HIGH-fed piglets. CONCLUSION: The lack of differences in intestinal and bodyweight measures among piglets indicate a-LA supplementation does not impact overall growth, regardless of concentration. Additionally, no observed differences between CONT- and LOW-fed piglets in behavior and neuroimaging measures indicate a low concentration of a-LA does not affect normal brain development. Supplementation of a-LA at a high concentration appeared to alter white matter maturation in the internal capsule, which may indicate delayed neurodevelopment in these piglets.

17.
J Pediatr Gastroenterol Nutr ; 63(6): 688-697, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27031373

RESUMO

OBJECTIVE: This study tested the hypothesis that the addition of prebiotics and 2 functional milk ingredients to infant formula would maintain normal growth and gut development, and modify microbiota composition and neurotransmitter gene expression in neonatal piglets. METHODS: Two-day-old male piglets (n = 24) were fed formula (CONT) or formula with polydextrose (1.2 g/100 g diet), galactooligosaccharides (3.5 g/100 g diet), bovine lactoferrin (0.3 g/100 g diet), and milk fat globule membrane-10 (2.5 g/100 g diet) (TEST) for 30 days. On study day 31, intestinal samples, ileal and colonic contents, and feces were collected. Intestinal histomorphology, disaccharidase activity, serotonin (5'HT), vasoactive intestinal peptide (VIP), and tyrosine hydroxylase (TH) were measured. Gut microbiota composition was assessed by pyrosequencing of the V3-V5 regions of 16S rRNA and quantitative polymerase chain reaction. RESULTS: Body weight of piglets on TEST was greater (P ≤ 0.05) than CONT on days 17 to 30. Both groups displayed growth patterns within the range observed for sow-reared pigs. TEST piglets had greater jejunal lactase (P = 0.03) and higher (P = 0.003) ileal VIP expression. TEST piglets tended to have greater (P = 0.09) sucrase activity, longer (P = 0.08) ileal villi, and greater (P = 0.06) duodenal TH expression. Microbial communities of TEST piglets differed from CONT in ascending colon (AC, P = 0.001) and feces (P ≤ 0.05). CONT piglets had greater relative abundances of Mogibacterium, Collinsella, Klebsiella, Escherichia/Shigella, Eubacterium, and Roseburia compared with TEST piglets in AC. In feces, CONT piglets harbored lower (P ≤ 0.05) proportions of Parabacteroides, Clostridium IV, Lutispora, and Sutterella than TEST piglets. CONCLUSIONS: A mixture of bioactive ingredients improved weight gain and gut maturation, modulated colonic and fecal microbial composition, and reduced the proportions of opportunistic pathogens.


Assuntos
Colo/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Fórmulas Infantis , Prebióticos/microbiologia , Animais , Peso Corporal , Expressão Gênica , Humanos , Lactente , Mucosa Intestinal/enzimologia , Masculino , Leite/metabolismo , Neurotransmissores , Suínos
18.
Front Pediatr ; 4: 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870719

RESUMO

INTRODUCTION: Milk fat globule membrane (MFGM) and lactoferrin have been identified as two components that have potential to affect neurodevelopment. While concentrations of some MFGM constituents in infant formulas are within human milk range, they may not be present at optimal or clinically effective levels. However, lactoferrin levels of infant formulas are consistently reported to be lower than human milk. This study sought to provide a novel combination of prebiotics, bovine-derived MFGM, and lactoferrin and assess their influence on neurodevelopment. METHODS: Twenty-four male piglets were provided either TEST (n = 12) or CONT (n = 12) diet from 2 to 31 days of age. Piglets underwent spatial T-maze assessment starting at 17 days of age, were subjected to magnetic resonance imaging at 30 days of age, and were euthanized for tissue collection at 31 days of age. RESULTS: Diffusion tensor imaging revealed differences in radial (P = 0.032) and mean (P = 0.028) diffusivities in the internal capsule, where CONT piglets had higher rates of diffusion compared with TEST piglets. Voxel-based morphometry indicated larger (P < 0.05) differences in cortical gray and white matter concentrations, with CONT piglets having larger tissue clusters in these regions compared with TEST piglets. In the spatial T-maze assessment, CONT piglets exhibited shorter latency to choice compared with TEST piglets on day 2 of acquisition and days 3 and 4 of reversal. CONCLUSION: Observed differences in microstructure maturation of the internal capsule and cortical tissue concentrations suggest that piglets provided TEST diet were more advanced developmentally than piglets provided CONT diet. Therefore, supplementation of infant formula with prebiotics, MFGM, and lactoferrin may support neurodevelopment in human infants.

19.
Nutr Neurosci ; 19(10): 425-433, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26046479

RESUMO

OBJECTIVES: Adequate choline supply during the perinatal period is critical for proper brain formation, when robust neurogenesis and neuronal maturation occur. Therefore, the objective of this study was to examine the impact of perinatal choline status on neurodevelopment. METHODS: Sows were fed a choline-deficient (CD) or choline-sufficient (CS) diet during the last half of the gestational period. At 2 days of age, piglets from sows within each prenatal treatment group were further stratified into postnatal treatment groups and provided either a CD or CS milk replacer, resulting in four treatment groups. At 30 days of age, piglets underwent magnetic resonance imaging (MRI) procedures to analyze structural and metabolite differences. RESULTS: Single-voxel spectroscopy (SVS) analysis revealed postnatally CS piglets had higher (P < 0.001) concentrations of glycerophosphocholine-phosphocholine than postnatally CD piglets. Volumetric analysis indicated smaller (P < 0.006) total brain volumes in prenatally CD piglets compared with prenatally CS piglets. Differences (P < 0.05) in the corpus callosum, pons, midbrain, thalamus, and right hippocampus, were observed as larger region-specific volumes proportional to total brain size in prenatally CD piglets compared with CS piglets. Diffusion tensor imaging (DTI) suggested interactions (P < 0.05) between prenatal and postnatal choline status in fractional anisotropy values of the thalamus and right hippocampus. Prenatally CS piglets had lower cerebellar radial diffusivity (P = 0.045) compared with prenatally CD piglets. DISCUSSION: This study demonstrates that prenatal choline deficiency has profound effects by delaying neurodevelopment as evidenced by structural and metabolic MRI assessments.


Assuntos
Encéfalo/patologia , Deficiência de Colina/fisiopatologia , Modelos Animais de Doenças , Desenvolvimento Fetal , Retardo do Crescimento Fetal/etiologia , Fenômenos Fisiológicos da Nutrição Materna , Neurogênese , Animais , Animais Recém-Nascidos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colina/metabolismo , Colina/uso terapêutico , Deficiência de Colina/dietoterapia , Dieta/efeitos adversos , Imagem de Tensor de Difusão , Feminino , Retardo do Crescimento Fetal/diagnóstico por imagem , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Tamanho do Órgão , Fosfatidilcolinas/metabolismo , Fosforilcolina/metabolismo , Gravidez , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...